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Abstract Advancement in the seismic networks results
in formulation of different functional forms for devel-
oping any new ground motion prediction equation
(GMPE) for a region. Till date, various guidelines and
tools are available for selecting a suitable GMPE for any
seismic study area. However, these methods are efficient
in quantifying the GMPE but not for determining a
proper functional form and capturing the epistemic un-
certainty associated with selection of GMPE. In this
study, the compatibility of the recent available function-
al forms for the active region is tested for distance and
magnitude scaling. Analysis is carried out by determin-
ing the residuals using the recorded and the predicted
spectral acceleration values at different periods. Mixed
effect regressions are performed on the calculated resid-
uals for determining the intra- and interevent residuals.
Additionally, spatial correlation is used in mixed effect
regression by changing its likelihood function. Distance
scaling and magnitude scaling are respectively exam-
ined by studying the trends of intraevent residuals with
distance and the trend of the event term with magnitude.
Further, these trends are statistically studied for a re-
spective functional form of a ground motion. Addition-
ally, genetic algorithm and Monte Carlo method are
used respectively for calculating the hinge point and
standard error for magnitude and distance scaling for a
newly determined functional form. The whole

procedure is applied and tested for the available strong
motion data for the Himalayan region. The functional
form used for testing are five Himalayan GMPEs, five
GMPEs developed under NGA-West 2 project, two
from Pan-European, and one from Japan region. It is
observed that bilinear functional form with magnitude
and distance hinged at 6.5 Mw and 300 km respectively
is suitable for the Himalayan region. Finally, a new
regression coefficient for peak ground acceleration for
a suitable functional form that governs the attenuation
characteristic of the Himalayan region is derived.

Keywords Functional form .Mixed effect models .

Inter- and intraevent residuals . Magnitude and distance
scaling . Himalayan GMPE

1 Introduction

Ground motion prediction equations take a practical
bend towards characterizing the present state of the
practice of seismic hazard analysis for earthquake-
prone regions. Advancement in the seismic network
and geophysics results in incorporating various new
parameters for deriving any ground motion prediction
equations (GMPEs). The general procedure used in
developing any GMPE is the regression analysis of the
ground motion recordings either from past events or
from stochastic simulation. GMPE models describe the
distribution of ground motion in terms of median and
logarithmic standard deviation (Strasser et al. 2009).
However, the limitation of such approach is the
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appropriate representation of ground motions used to
develop the empirical model. Additionally, it lacks in
relation to the particular seismic scenarios for which
these GMPEs will be applied (Bradley 2013). Recently,
a summary of the worldwide, developed GMPEs from
1964 to mid-2015 (inclusive) for estimating peak
ground acceleration (PGA) and spectral acceleration
(SA) was published by Douglas (2015). Despite the
availability of various methods and criteria for selecting
an appropriate GMPE (Cotton et al. 2006; Bommer et al.
2010; Delavaud et al. 2009) for many practical applica-
tions, there exists an important issue regarding the ap-
plicability of a GMPE developed for one region to
another region.

NGA-West 2 project has developed a series of
ground motions for the tectonically active region of
the shallow crustal earthquakes. These GMPEs are pre-
sented by Abrahamson et al. (2014), Boore et al. (2014),
Campbell and Bozorgnia (2014), Chiou and Youngs
(2014), and Idriss (2014), which are recently updated
under the NGA-2 project. Similarly, for the Himalayan
region, which is considered as one of the most active
seismic region in the world, various authors (Sharma
and Bungum 2006; Das et al. 2006; Baruah et al. 2009;
Nath et al. 2009; Sharma et al. 2009; Gupta 2010;
Anbazhagan et al. 2013) have published different
GMPEs for determining the PGA at rock level. Recent-
ly, Akkar et al. (2014) and Bindi et al. (2014) have
developed new GMPEs for Pan-European region.
Moreover, Zhao et al. (2016a, b, c) have developed three
new GMPEs for Japan by differentiating the subduction
interface earthquakes, subduction slab earthquakes, and
shallow crustal and upper mantle earthquakes. Even
though, tectonically, these regions are active, the
attenuation characteristics of seismic waves for these
regions are different. Cotton et al. (2006) describes
how the source characteristic and path effect related to
geometric and anelastic attenuation and site effect varies
from region to region. This can be one of the reasons for
many of these GMPEs to have different hinge points for
magnitude and distance scaling. As the Himalayan
seismotectonic is of subduction in nature, the extent of
applicability of GMPEs developed for the shallow crust-
al region is a matter of concern. Hence, an important
issue for developing a functional form that encounters
the attenuation characteristic of the region is studied in
this paper, using different statistical tools.

Recently developed GMPEs are based on a large
number of recorded data; hence, various effects (like

faulting type, site response, basin and hypocentral
depth, and depth of the top of rupture, directivity,
hanging-wall site locations) have been well resolved,
for example, NGA-West 2 GMPEs. However, many of
the seismically active regions like the Himalayan region
lack in recorded strong motion data of great and large
earthquakes, despite the availability of the dense seismic
network. The objective of the present study is to use the
statistical techniques to examine the applicability of
available functional forms for the region having less
recorded strong motion database. The study has been
carried out by determining the residuals using the re-
corded and the predicted spectral acceleration at differ-
ent periods. The regression on the residuals has been
performed using a mixed effect regression technique to
determine the applicability of different functional forms
corresponding to magnitude and distance scaling. The
mixed effect regression is used to determine the magni-
tude and distance scaling based on the residuals. For
determining the intra- and interevent residuals, spatial
correlation has been used in mixed effect regression by
changing its likelihood function. Further, inter- and
intraevents residuals have been statistically studied and
used for evaluating the functional form corresponding to
the distance and magnitude scaling for the limited re-
corded data. Distance scaling is investigated by exam-
ining the trends of intraevent residuals with distance,
whereas magnitude scaling was examined by studying
the trend of the interevent term with magnitude. Further,
genetic algorithm and Monte Carlo method are used for
determining the hinge points and to calculate the stan-
dard error in each term that governs the magnitude and
distance scaling for a particular functional form. The
whole procedure is applied to the active Himalayan
region with a limited number of strong motion records.
The functional form used for testing are five Himalayan
GMPEs, five GMPEs developed under NGA-West 2
project, and three GMPEs from other active regions.
Based on the analysis, a new functional form is arrived
for the Himalayan region. Additionally, using the mixed
effect regression along with the Monte Carlo approach,
a GMPE for PGA for the Himalayan region has been
developed.

2 Functional forms used in various GMPEs

With the enhancement in the database size and advance-
ment in the simulation algorithms, new GMPEs are
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being formulated with the varying degree of complexity
in its functional form. Improvement in the functional
form of GMPE and addition of different effects or
parameters (directivity, fault type, etc.) benefited various
engineering purposes, mostly for rarely observed con-
ditions such as large magnitude and short distance
events. However, a basic form of a particular GMPE
must account for magnitude dependence and saturation,
as well as attenuation of stress waves with distance due
to spreading and material damping. In addition to this,
many of the GMPEs developed worldwide include the
effect of faulting type, basin and hypocentral depths and
depth of the top of rupture, site response, directivity,
hanging-wall site locations, and whether the event was a
main shock or aftershock. Most of these parameters are
only applicable for the seismic study area with a well-
defined source geometry and orientation. As per Baltay
and Hanks (2014), for describing these effects, a large
number of explanatory parameters are necessary, which
make the NGA-West 2 GMPEs more complex to un-
derstand. However, most of these parameters (hanging-
wall and non-linear site amplification) can only be
employed for detailed and well-studied sites. Addition-
ally, the models for the hanging-wall, directivity, and the
non-linear site response are constrained by extra data
and research (Donahue and Abrahamson 2014; Kamai
et al. 2014; Spudich et al. 2014). Hence, attributes of the
Himalayan, NGA-West 2, Pan-European, and Japan
GMPE models for active region have been discussed
in this section. For hazard analysis, the commonly used
Himalayan GMPE models are those of Nath et al.
(2009), Sharma et al. (2009), Gupta (2010), NDMA
(2010), and Anbazhagan et al. (2013). These equations
will be referred with the following names here onwards;
NA09, SH09, GU10, NDMA10, and AN13, respective-
ly. Similarly NGA-West 2 models namely Abrahansom
et al. (2014), Boore et al. (2014), Campbell and
Bozrgnia (2014), Chiou and Young (2014), and Idriss
(2014) are respectively abbreviated as AB14, BA14,
CB14, CY14, and ID14 and Akkar et al. (2014), Bindi
et al. (2014), and Zhao et al. (2016a, b, c) are referred to
AK14, BD14, and ZH16. The above used GMPEs are
developed recently with a wide range of recorded data-
base and widely used for determination of seismic haz-
ard for an active region.

Each of the NGA-West 2 GMPEs incorporates satu-
ration as a function of magnitude at short distances and
short periods. These five models contain the style of
faulting and its dependency decreases with magnitude.

However, BA14 and ID14 have a style of faulting,
which is magnitude independent. AB14, CB14, and
CY14 explicitly considered hanging wall features and
rupture depth term. However, BA14 accounts the hang-
ing wall effect using Joyner–Boore distance (RJB). All
the five GMPEs are defined as a function of magnitude
as moment magnitude or Mw. The distance metric used
in AB14, CB14, CY14, and ID14 is the closest distance
to the rupture plane, RRUP. Whereas, BA14 used the
closest distance of the horizontal projection of the rup-
ture plane, RJB. AB14, CB14, and CY14 used depth to
the top of the rupture (ZTOR); additionally, depth of the
hypocenter, ZHYPwas included in CB14. BA14 included
neither of the depth parameter in the GMPE functional
form. AK14 and BD14 used RESORCE database for
deriving the GMPE for Pan European region. For both
the GMPEs, magnitude size is defined using moment
magnitude or Mw and considered RJB, for defining the
finite fault distance metric(s). ZH16 has derived the
three GMPEs using the Japan database by differentiat-
ing the subduction interface earthquakes, subduction
slab earthquakes, and shallow crustal and upper-mantle
earthquakes. ZH16 used moment magnitude or Mw for
earthquake size and used the shortest distance from a
recording station to the fault plane if a fault model is
available, otherwise the hypocentral distance for dis-
tance metric(s). Additionally, ZH16 has used the geo-
metric attenuation rate term in the GMPE functional
form. In case of subduction interface earthquakes,
ZH16 defined different coefficients for the magnitude
scaling by differentiating deep and shallow earthquakes.

Magnitude scaling is accounted in GMPEs as both
linear (CB14) and non-linear or bilinear (AB14, BA14,
CY14, ID14, AK14, and BD14) functional form. BA14
used a linear functional for magnitude scaling for mo-
ment magnitude of less than 5.5 and non-linear or qua-
dratic for magnitude more than 5.5 (check both are more
than). Whereas, CB14 used piecewise linear form and
CY14 used a bilinear relation with smooth transitions
for different magnitude bins (see Table 1). The Himala-
yan GMPE models, SH09, GU10, and AN13, used a
linear form, whereas NDMA10 used a non-linear
(quadratic) form for magnitude scaling and NA09 used
a cubical form for magnitude scaling. AK14 used the
quadratic functional form for magnitude scaling with
hinge at 6.75. BD14 has used a linear functional form
for magnitude scaling for Mw > 6.75 and the quadratic
for events with Mw < 6.75. ZH16 used linear functional
form in case of subduction interface earthquakes and
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shallow crustal and upper-mantle earthquakes, however
non-linear or bilinear in case of subduction slab earth-
quakes. ZH16 used a bilinear functional form for mag-
nitude scaling with hinge at 7.1Mw in all the three cases.
Table 1 shows the different functional forms for magni-
tude scaling.

Many of the GMPE models use simple, functional
form as far as distance scaling is concerned. Table 2
shows the different functional form for distance adopted
by various authors in NGA-West 2 and Himalayan
models. The GMPE models CB14 AB14 and AK14
used function form consisting of product of a linear
function of magnitude and the logarithm of the square
root of the sum of squares of distance and fictitious
source depth. The linear term accounts for the decrease
in attenuation with respect to increase in magnitude.
However, the overall intercept is negative whereas co-
efficient corresponding to magnitude term is positive.
CY14 model accounted the variation of distance atten-
uation by capturing the dominant effect of body waves
up to the distance of 40–70 km and Lg waves at larger
distances. BA14 and BD14 accounted the distance at-
tenuation with the apparent anelastic term along with
linear function of magnitude and the logarithm of dis-
tance. Both the GMPEs used additional magnitude and
distance constants which were represented as Mref and
Rref. BA14 and BD14 respectively fixed Mref to 4.5 and
5.5, and both the GMPEs used Rref as 1 km. CY14 and
ID14 also included the anelastic attenuation term. As far
as the Himalayan GMPEs are concerned, the distance
scaling is generally a logarithm of a linear combination
of distances and exponential of magnitudes (NA09,
NDMA10 and AN13). NDMA10 and GU10 use an
anelastic attenuation coefficient for attenuation with
distance to account for material damping. Most of the
Himalayan GMPEs only include only the attenuation of
seismic waves due to spreading, which is governed by
logarithmic of distance term (see Table 2). ZH16 include
both anelastic and geometric attenuation variabilities for
distance scaling. ZH16 further used two coefficients for
geometric attenuation rate by differentiating it from
large-distance geometric attenuation rate. From Tables 1
and 2, it can be seen that different researchers have used
a different functional form for magnitude and distance
scaling. This variability in functional form can be
accounted more clearly, if a large number of recorded
strong motion data are available. For some of the re-
gions like the Himalaya, where seismicity is distributed
non-uniformly and large number of strong motion data

is not available, mixed effect regression on the residual,
by including spatial variability, is one of the ways in
which the best suitable functional form can be derived.

3 Different methods available for comparison
of GMPEs

There are various approaches available in the literature
that has been used for comparing of the GMPE. These
approaches are as follows: (1) Direct comparison of
median prediction of PGA from GMPEs for different
regions (Campbell and Bozorgnia 2006; Abrahamson
et al. 2008; Gregor et al. 2014), (2) analysis of variances
(Douglas 2004), and (3) determining the consistency of
data distribution with respect to GMPE using log likeli-
hood (Delavaud et al. 2009) and Euclidian distance
(Kale and Akkar 2013) concepts.

Examples of comparison of GMPEs are shown in
Fig. 1(a & b). Estimated peak horizontal acceleration
calculated from NA09, NDMA10, and AN13 is com-
pared with the NGA-West-2 (AB14, BA14, CB14,
CY14, and ID14), Japan (ZH16), and Pan-European
model (AK14 and BD14). It can be seen from Fig. 1
(a & b) that the Himalayan GMPEs are not matching
well with the NGA-2 West models over the entire range
of distance and moment magnitude. The attenuation of
the PGA is sharp in case of Himalayan GMPEs as
compared to NGA-West 2 models, whereas NGA-west
2 models have faster distance attenuation. However,
ZH16 GMPEs for subduction slab and interface earth-
quake is matching well with the Himalayan GMPE.
From Fig. 1(a & b), it can also be seen that as far as
recorded Himalayan data is concerned, NGA-West 2
and Pan-European GMPEs are under-predicting the
peak ground acceleration (PGA) values. This is the
direct way for comparing the different GMPEs. Another
approach for comparing the GMPEs is by analyzing the
variance. This approach was used by Douglas (2004) to
relate the ground motion within the Europe region. In
this approach, mean and variance of log of data inside
particular magnitude and distance bins for two different
regions and combined data for those regions have been
calculated. The result has been further used in following
two ways: firstly, the variance of the combined data for
both the regions would be compared with the variance
within the region using statistical test, and secondly, the
binned results would be used to plot the mean for each
magnitude-distance bin together for the pair of regions.
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The detailed procedure is given in Douglas (2004). In
addition to this, Bommer et al. (2010) and Stewart et al.
(2015) have recommended certain criteria for selecting a
GMPE for a particular tectonic region.

The information-theoretic approach was developed
by Delavaud et al. (2009), which is based on quantita-
tive assessment of GMPEs for a region, which can also
be used for GMPE selection. This approach made use of
log-likelihood to rank the GMPE based on the observed
PGA or intensity of a region. This method was used by
Nath and Thingbaijam (2011) and Anbazhagan et al.
(2016) for the selection of the suitable GMPEs for
Indian subcontinent. Log-likelihood (LLH) method
was also used by and Zafarani and Farhadi (2017) to
test the efficiency of some selected GMPEs against
small-to-moderate recorded data in the Iranian plateau.
Another method developed by Kale and Akkar (2013)
makes use of modified Euclidean distance for ranking
the GMPE. This method accounts the aleatory variabil-
ity through standard deviations of GMPEs and considers
the bias between the median estimations and observed
ground-motion data. The bias can be identified as ana-
logues to the residual analysis concept. Further, uncer-
tainty in ground-motion variability could be addressed
by calculating the probability distribution of the differ-
ence between the observed and calculated data. This
method is different from LLH ranking, as LLH-based
ranking makes use of the occurrence probability of the
observed data point by using the corresponding estima-
tion that is assumed to be log-normally distributed with
median and sigma values of the GMPE (Kale and Akkar
2013). Delavaud et al.’s (2009) LLH method is used to
rank the different functional form discussed above and
also given in Tables 1 and 2. The ranking value of these
GMPEs based on LLH approach is given as Table 4 in
Appendix 1.

Even though, there are qualitative and quantitative
methods (as discussed above) to select the representa-
tive GMPEs for seismic hazard analysis for a particular
region; however, suitability of GMPE functional form to
capture the distance attenuation and magnitude scaling
is not explicitly addressed in any of the methods. Hence,
in this study, GMPE functional form for magnitude and
distance scaling is derived based on the mixed effect
regression on the residuals. The whole methodology is
applied to the recorded strong motion data for the Hi-
malayan region. In the further sections, methodology for
determining the suitable GMPE functional form is
discussed.T
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4 Methodology

4.1 Calculation of GMPE bias and standard deviation

The methodology used in this study regarding the selec-
tion of a particular functional form corresponding to
distance and magnitude scaling has been discussed in
this section. The residual between the data is evaluated
as

Ri; j
� �

k ¼ ln SAi; j
� �

data−ln SAi; j
� �

k ð1Þ

Index i, j, and k, respectively, refers to the earthquake
event, recording within the event i and a particular
GMPE. Therefore, (Ri , j)k is the residual of data from
recording j for the event i, calculated using GMPE k.
(SAi , j)data and (SAi , j)k respectively represent the spec-
tral acceleration calculated using recorded data and me-
dian spectral acceleration calculated using k GMPE in
natural logarithm.

Further, the variation in residuals corresponding to
between the events (intraevent) needs to be separated
from the variation within the events (interevent). To
accomplish that, a mixed effect regression proposed by
Abrahamson and Youngs (1992) and further extended
by Jayaram and Baker (2010) by considering spatial
correlation is used. The whole algorithm used is given
in Appendix 2. The following equation has been used to
perform the regression.

Ri; j
� �

k ¼ ck þ ηið Þk þ ϵi; j
� �

k ð2Þ

where ck is the mean offset (or bias) of the data relative
to GMPE k, ηi represents the event term for event i, and
εi , j is the intraevent residuals for recording j in event i.
The event term ηi represents the mean offset of data for
event i from the prediction provided by the GMPE
median after adjusting the offset ck. In other words, the
intraevent residual ϵi , j is the residual after accounting
for the interevent residual ηi. The event term would be
helpful in providing a convenient mechanism for testing
the ability of a GMPE to provide the magnitude scaling
of a database. Interevent (η) and intraevent (ϵ) terms are
assumed to have zero mean and τ and σ respectively as
standard deviation. Hence, τ refers to the event-to-event
variability and, on the other hand, σ refers to the vari-
ability in a single event. A schematic diagram illustrat-
ing the residuals and parameters is given in Fig. 2.
Figure 2 explains the types of residuals and how the
intraevent and interevent residuals can be extracted from

the total residuals. In this study, a database has been
grouped according to the event to use the linear mixed
effect. However, it can also be grouped based on the
distance, but attenuation characteristic may be lost. Gen-
erally, most of the distance data is single (i.e., only for
few events having same distance); hence, the mixed
effect regression coefficients may not be statistically
significant for that case.

Jayaram and Baker (2008) concluded that the total
residuals (Eq. 1) calculated at multiple sites during a
particular earthquake can be assumed to jointly follow a
multivariate normal distribution. Hence, the covariance
metric(s) for the total residual in the presence of spatial
correlation is derived using Jayaram and Baker (2010).
The algorithm used to calculate the standard deviation
of the intraevent and interevent residual considering
mixed effect models is given in Appendix 2. The other
reason for using the mixed effect is to account for the
dependency between multiple observations at a single
recording site. This regression also allows estimating the
repeatable biases and variances, when the database is
grouped according to one or more classification factor
like moment magnitude or site class.

4.2 Intraevent residual (ϵi , j) trend with distance

The suitability of a respective functional form of a
GMPE corresponding to distance scaling has been eval-
uated, and its adaptability for recorded ground motion is
also studied. This can be tested by examining the trend
of the intraevent residuals ϵi , j as a function of distance.
ϵi , j is the remaining residual after mean error (ck) and
event term (ηi) are subtracted from the total residual (see
Eq. 2). For determining the trend, a fit line has been
plotted according to

ϵi; j ¼ aR þ bRln Ri; j
� �þ κRð Þi; j ð3Þ

Parameters aR and bR are the regression parameter,
and κR is the residual of the fit for recording j from event
i. As per Scasserra et al. (2009), slope parameter bR
represents the misfit of the distance scaling in the re-
corded dataset with respect to the selected GMPE. The
statistical significance of bR is evaluated using t-statistic
to test the null hypothesis, i.e., bR = 0. This test gives the
p value, which defines the significance level that null
hypothesis cannot be rejected.
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4.3 Interevent residual (ηi) trend with magnitude

Similar to distance scaling, magnitude scaling is also
tested by examining the trend of the event terms versus
magnitude. For evaluating the magnitude scaling, the
trend of interevent term (ηi) is plotted against the mag-
nitude and variation between the magnitudes have been
studied statistically. A fit line has been plotted according
to the following relation:

ηi ¼ aM þ bMMi þ κMð Þi ð4Þ

Parameters aM and bM are the regression parameters,
and κM is the residual of the fit for event i. Separate

regression has been performed according to Eq. 4 for
PGA and PSA (pseudo spectral acceleration). Non-zero
and significant bM term indicates that the magnitude
scaling in the model does not match the data. From the
t-statistics, it is determined that when the slope (bM) of
the trend line is non-zero. It is not statistically significant
at 95% confidence level.

4.4Monte Carlo and genetic algorithmmethod for hinge
point and standard error estimation

In this section, the methodology regarding estimation of
hinge point and standard errors and confidence intervals
using genetic and Monte Carlo algorithm is discussed.
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Fig. 1 Comparison of a PGA (g)
with distance moment magnitude
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of 100 km with recorded strong
motion
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Recorded database is regressed against the functional
form mentioned in Tables 1 and 2. In Tables 1 and 2, it
can be seen that the magnitude and distance scaling is
done using either three hinge or two hinged equations.
The determination of hinge point based on the recorded
database is very important as this is used for
distinguishing the scaling of higher magnitude with
lower or large distance with the shortest distance.
Hence, genetic algorithm is used for determination of
the hinge point. Different combinations of the magni-
tude and distance have been used for the hinge point
determination. The best combination is the one that
minimizes the mean absolute value of the residuals,
defined as follows:

resi ¼ 1

N
∑
N

j¼1
logSAij fð Þ−logSAi fð Þ
��� ��� ð5Þ

where SA is the spectral acceleration, and logSAi fð Þ is
the average of logSAij(f) over allN stations, subscript by j

logSAi fð Þ ¼ 1

N
∑N

j¼1logSAij fð Þ ð6Þ

Therefore, the best solution is the one that results in
almost identical SA for stations that recorded the same
events.

In this study, a genetic algorithm (GA) is used to
determine the best combination of the variables. The
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GA emphasizes on a random initial population of vari-
ables, which are generated in a range defined by con-
straints. Variables are grouped in sets, each of which is
called a string and composed of a series of characters
that define a possible solution for the problem. The
objective function and the constraints are used to eval-
uate the performance of the variables, which is repre-
sented as the fitness of each string. Mathematically, the
fitness function is used to determine a value for the
solution of the objective function. The GA mainly in-
volves three operations: selection, crossover and
mutation. These operations and the algorithm have
been explained by Holland (1975) and Goldberg
(1989). The GA tests different combinations of the
variables and finds the solution that minimizes the mean
value of the errors, as defined by Eq. 5, across all events.
The objective function that has been used to minimize
the GA is defined as follows:

Objective function ¼ 1

M
∑
M

i¼1
resi ð7Þ

where M is the number of events.
Hence, the hinge-bilinear functional form is used

with a constraint on magnitude and distance. The whole
procedure is shown with its applicability to the Himala-
yan region. Further, to test the precision of the estimated

parameters, their standard errors and confidence inter-
vals are evaluated using the Monte Carlo simulation
technique (Press et al. 2007). For this purpose, 1000
samples of the PGA are simulated using the calculated
coefficients for the different sets of magnitude and dis-
tance. Themagnitude varies from 4.0 to 9.0 and distance
from 10 to 500 km with respective interval of 0.1 Mw

and 10 km. The datasets are simulated by bootstrapping
the residuals (Efron and Tibshirani 1993). The simula-
tions are performed for the entire range of magnitude
and distance. The standard errors of the estimated pa-
rameters (the bootstrap estimated of the standard error)
are the standard deviation of the estimated parameters of
the simulated datasets (Efron and Tibshirani 1993).
There are several methods to evaluate the bootstrap
confidence interval. The simplest one is the standard
bootstrap confidence interval that works when the esti-
mator is normally distributed. The 100(1 −α)% stan-
dard bootstrap confidence interval on the estimator pa-
rameter is defined by Efron and Tibshirani (1993) as
Estimate ¼ �zα=2ŝe, where zα/2 is the upper 100α/2
percentage point of the standard normal distribution
and ŝe is the bootstrap estimate of the standard error.

For each of the simulated dataset, using the mixed
effect regression, new regression coefficients corre-
sponding to each of the independent parameters is de-
termined. Using the newly determined coefficients,
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again residuals analysis explained above is performed.
For each of the simulated dataset, ck, τ, and σ have been
calculated and compared with the original one. The
schematic diagram to illustrate this is shown as Fig. 3.
Further, using different sets ck, τ, and σ, the suitable
functional form is determined. In the next sections, the
whole methodology is applied for the strong motion
recorded database for the Himalayan region.

5 Study area and database

The tectonic framework of the Indian subcontinent is
complex and spatiotemporal which covers an area of
about 3.2 million km2. The entire Himalayan arc (75° to
98° E) of around 2500 km extends from Kashmir in the
northwest to Arunachal Pradesh in the northeast. The
width of this arc varies from 250 to 300 km. Collision of
Indian plate with the Asian plate at rate of 15 to 20 cm/
year (Bilham et al. 1998) results in building of high
stress in the Indian plate. Furthermore, because of crust-
al shortening beside Himalayan, northern edge results in
increase of the earthquake hazard, particularly in the
northern part of Indian subcontinent. The Himalayan
geodynamics is the reason for occurrence of the largest
earthquakes (1897 Assam, 1905 Kangra, 1934 Bihar-
Nepal, 1950 Assam, 2011 Sikkim, 2015 Nepal
earthquake, 2016 Northeast India earthquake) in the
foothills and north of the Main Boundary Thrust
(MBT). Mandal et al. (2001) explained that the reacti-
vation of the upper crustal fault due to moderate earth-
quakes may result in possible slip surfaces of crustal
shear zones which can facilitate the upliftment of lesser
as well as higher Himalaya. As per Singh et al. (2002),
the 750 km long central seismic gap lies between the
eastern edge of 1905 rupture zone and the western edge
of the 1934 earthquake. It remains unbroken and is
under high strain. A recent study by Bilham (2015) on
Gorkha (2015) concluded that the northern Nepal
shifted up to 7 m southward and Kathmandu was raised
by 1 m. This study further describes that Gorkha (2015)
earthquake failed to fully rupture the main fault beneath
the Himalayas and hence a large earthquake is inevitable
in the future. Currently, the Indian plate is continuously
moving northwards at about 5 cm per year towards the
Eurasian plate which may give rise to massive earth-
quakes in the near future (Kayal 2008). Hence, proper
seismic studies are required for the Himalayan region to
predict catastrophic hazards due to the future inevitable

earthquakes. The present study concentrates on deter-
mining the suitable functional form of GMPE for Hi-
malayan region that would be further useful in the
development of new GMPE and estimation of seismic
hazard for the region.

The dataset has been collected from the strong mo-
tion instrumentation network that covers the Indian
Himalayan range from Jammu and Kashmir to Megha-
laya. The recorded strong motion database is available
with Indian Institute of technology, Roorkee (IITR),
Virtual Data Center (VDC), and Indian seismic and
GNSS network (ISGN). The installation of these instru-
ments with IITR started in November 2005 and record-
ed around 130 earthquakes in a span of 4 years. Detailed
description of these strong motion accelerographs and
data processing of the waveforms are given in Kumar
et al. (2012). Before 2005, the digital processed wave-
form of the recorded ground motion has been collected
online from Virtual Data Center and after 2005 from
PESMOS (www.pesmos.in), which is maintained by the
department of earthquake engineering of IITR. The
database after 2013 is collected from the Indian
seismic and GNSS network. Details regarding the
seismographs units and broadband sensor are taken
from the ISGN website (http://www.isgn.gov.
in/ISGN/). The database used in this study consists of
512 ground motions recorded at rock and soil sites from
66 earthquakes with moment magnitude varying from 4
to 7.8 and hypocentral distance from 10 to 500 km. The
database also included the 2015 Nepal earthquake
recording. The data obtained from VDC is baseline
corrected and band-pass filtered between 0.75–0.9 and
25–27 Hz. However, the waveforms obtained from
PESMOS and ISGN are high-passed filtered at corner
frequency of 0.1 Hz and low-pass filtered at 25 Hz using
fourth order Butterworth filter. The processed accelera-
tion time-history is further integrated to obtain the ve-
locity time history and spectral acceleration at various
time periods. The database used in this study is given in
Fig. 4. From Fig. 4, it can be seen that forMw < 5 strong
motion database up to 200 km is considered for analysis.
As for distance more than 200 km, the signal to noise
ratio is very low; therefore, these data are rejected.

For most of the strong motion recordings used in this
study, we do have proper information regarding RRUP
and RJB. Hence, for distance matrix, hypocentral dis-
tance (Rhypo) is taken into consideration for distance
scaling irrespective of the definition used in the original
GMPE. From here onwards, distance is referred as
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hypocentral distance. Similarly, moment magnitude is
used for magnitude scaling irrespective of the definition
of the magnitude used in a parent GMPE. For most of
the earthquakes, the detailed fault plane solution is not
available; hence, hanging wall effect is not considered in
this study, and only Rhypo has been used for further
analysis. As proper shear wave velocity or amplification
factor corresponding to recorded stations is not avail-
able, shear wave velocity scaling is not considered in
this study.

6 An insight of function form for the Himalayan
region

From Tables 1 and 2, it can be seen that NGA-West 2,
Himalayan, Pan-European, and Japan GMPEs were de-
rived considering different functional forms. Hence, for
deriving a new GMPE for the Himalayan region, the
best suitable functional form of a GMPE needs to be
arrived so that path and source parameters could be
properly incorporated. Hence, in this section, GMPE
coefficients corresponding to different functional forms
(see Tables 1 and 2) have been derived using recorded
ground motion database for the Himalayan region.
Crossed and nested mixed effect approach is used for
deriving the regression coefficients corresponding to
independent parameter. Pinheiro and Bates (2000) have
presented a theoretical background upon the formula-
tion and implementation of the mixed effect models.
Further, Bates (2010) has provided the optimized

methods for dealing with linear, non-linear, and gener-
alized mixed effect models. The detailed mathematical
procedure regarding the mixed effect model can be
further referred from Pinheiro and Bates (2000) and
Bates (2010). For implementing the mixed effect, lme4
R package in Bates et al. (2013) is used for determining
the regression coefficients for independent parameters.

The newly derived coefficients are statistically test-
ed to determine the bias in these coefficients corre-
sponding to different functional forms. Based on the
residual analysis (usingEqs. 1 and 2) and statistical test
on residuals, functional form that properly represents
the Himalayan data has arrived. FromTables 1 and 2, it
can be seen that there are 11 functional forms corre-
sponding to magnitude scaling (as SH09, GU10, and
AN13 have the same functional form) and 13 function-
al forms corresponding to distance scaling. Using all
the functional form mentioned in Tables 1 and 2, re-
spective regression coefficients have been derived
using the mixed effect regression approach as ex-
plained above. After determining the coefficients cor-
responding to each of the functional form, residual
analysis has been carried out. Using the results from
residual analysis, the suitability of functional form that
represents the magnitude and distance scaling for the
Himalayan data has been discussed.

Figure 5 provides plots for typical example of
intraevent residual (right) ϵi , j and interevent residual
(left) ηi for AB14 and NA09 GMPE model as given in
Tables 1 and 2. Using Eq. 2, model bias, i.e., ck for 13
functional forms, has been calculated. The model bias
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has been initially used for determining the best suitable
functional form of GMPE corresponding to the Hima-
layan data. For example, based on analysis, ck for AB14
is calculated as 0.0185which means the residual in PGA
value across all ground motion records is 0.0185 or the
average ratio of observed and predicted PGA is equal to
exponential of 0.0185, i.e., 1.02. The bias is shown in
Fig. 5a which can be read as the distance between the
thick black and green line. Table 3 provides the bias
value in the PGA and SA at 0.2 and 1.0 s corresponding
to the different functional forms of GMPEs. It can be

seen from Table 3 that the bias in PGA for the Himala-
yan GMPE functional forms is more as compared to the
NGA-West 2, Japan, and Pan-European GMPEs. Addi-
tionally, the site-to-site standard deviation varies from
0.6 to 1.25 for different functional forms.

Based on the analysis, it is seen that the bias in PGA
in case of BA14, AB14, ZH16SI, and ZH16SS is less as
compared to the other three functional forms of the
NGA-West 2, Japan, and Pan-European GMPEs. How-
ever, functional form of BA14 and BD14 is the same
even though the bias is different. Similarly, for all the

Bias in PGA

(a)

Bias in PGA

(b)

Zero Slope Line

Residual Line

Fig. 5 Residuals for PGA for a AB14 and b NA09 models. Extreme left shows the interevent residuals with magnitude, and extreme right
shows the intraevent residuals with logarithm of distance
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Himalaya models, bias in PGA is more in the case of
AN13, NA09, and SH09 as compared to NDMA10 and
GU10. In some cases, like ID14, CY14, NDMA10, and
AN13, bias is less for long periods. However, for AB14
and ZH16SS, bias in PGA and SAvalue is almost same
(see Table 3). The reason for more bias in case of AN13,
NA09, and SH09 may be due to non-consideration of
the material damping term discussed in detail at the end.
Improvement is observed in bias value in case of CY14,
AN13, and NA09 as material damping term becomes
less significant for long periods for the Himalayan
strong motion database. One of the important things that
are noticed from Table 3 is that even though the func-
tional forms are the same, the bias value is different for
example BA14 and BD14. One of the possible reasons
could be the hinge magnitude as BD14 is hinged at 6.75
Mw whereas BA14 at 5.5 Mw. Hence, hinge has an
important role in a functional form as it differentiates
the scaling of low to moderate earthquake with the large
size earthquake. This hinge magnitude determination is
discussed in later sections using a genetic algorithm.

Similar observations can be seen in the case of resid-
ual variation with respect to the distance. In case of
NA09 and AN13, the slope of the residual line (solid
line) is not zero which means that heteroscedasticity
characteristic of the residuals exists. The statistical sig-
nificance of the distance dependent intraevent residuals

is examined using t-statistics to test the null hypothesis,
i.e., slope of the residual line is zero. The statistical
testing provides a significance level, i.e., p value, which
indicates that the null hypothesis cannot be rejected.
Table 3 is provided with the 1-p value which refers as
a rejection confidence for a zero slope model. This p
value is also one of the factors in finding the best
suitable GMPE functional form for the Himalayan data.
The reason for high 1 p value in case of NA09 and
AN13 is explained above. Based on a variation of
residuals with distance corresponding to the different
magnitude, it is seen that the functional form used in
NGA-West 2 and Pan-European is having more error in
case of lower magnitude, i.e., Mw < 5. In case of the
Himalayan GMPE models, mixed effect has been seen,
i.e., error in both high and low magnitudes.

The Kolmogorov–Smirnov goodness-of-fit test (Ang
and Tang 2007) is used for examining the cumulative
distribution of the residuals so that the statistical signif-
icant departures from the residuals having a standard
normal distribution can be identified. In order to dem-
onstrate the key trends in the observed residuals as a
function of the predictor variables, the mean residual
and its 95% confidence interval are studied using non-
parametric regression (Ruppert et al. 1995; Wasserman
2006). The non-parametric mean and its confidence
intervals can be used to recognize the statistically

Table 3 Summary of bias in
PGA, SA (0.2 s), and SA (1.0 s)
along with the 1-p value (i.e., re-
jection confidence of zero slope
of residual line for respective
functional forms of different
models)

GMPE Bias 1-p value

PGA SA (0.2 s) SA (1.0 s) PGA SA (0.2 s) SA (1.0 s)

CB14 0.035 0.051 0.055 0.12 0.15 0.16

ID14 0.045 0.085 0.078 0.15 0.17 0.13

AB14 0.018 0.021 0.022 0.07 0.07 0.07

CY14 0.038 0.051 0.045 0.45 0.58 0.52

BA14 0.025 0.032 0.035 0.09 0.09 0.09

NA09 0.305 0.415 0.412 0.95 1.00 1.00

SH09 0.258 0.328 0.388 0.58 0.66 0.71

GU10 0.158 0.201 0.245 0.29 0.31 0.35

NDMA10 0.146 0.203 0.198 0.28 0.35 0.30

AN13 0.277 0.325 0.310 0.92 1.00 1.00

AK14 0.112 0.168 0.195 0.31 0.32 0.35

BD14 0.048 0.053 0.092 0.15 0.16 0.19

ZH16SI 0.034 0.042 0.056 0.13 0.13 0.13

ZH16SS 0.028 0.025 0.028 0.08 0.08 0.08

ZH16SM 0.148 0.197 0.125 0.20 0.20 0.20
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significant biases in the functional forms. To illustrate
this, the observed intra- and interevent for SA at 0.2 s
from the Himalayan database with BA14 and NA09
models have been plotted in Fig. 6. It can be seen from
Fig. 6a that NA09 over predicts the SA value at 0.2 s as
compared to BA14. Similar observations can be seen
from Fig. 6b. A same comparison has been carried out
for all the 13models (see Tables 1 and 2), corresponding
to PGA and SA at 0.2 and 1.0 s. Further, the applicabil-
ity of the models has been tested using the Log Likeli-
hood method. In order to do a likelihood calculation on
residual or error for different models, the probability
density function needs to be chosen. The error/residuals,
the difference between the predicted and observed
values, are assumed to follow a normal distribution.
This probability model compares the predicted and ob-
served values to produce the final likelihood. A model
that produces higher likelihood value is better. For a
given set of values in a vector X, with individual obser-
vation xi, and a set of parameter value θ, the log-
l ike l ihood funct ion is def ined as ln L θjXð Þ½ �
¼ ∑

N

i¼1
ln g xijθð Þ½ �, where ln[L(θ| X)] is the logarithm of

the likelihood of the set of parameters θ given the
observations X, and g(xi| θ) is the probability density
function of the probability model. For determining the
log-likelihood, probability density function is used to
calculate the natural log of the probability of each pair of
predicted and observed values. For each data point, the
mean of the probability density function is the observed

value. The point, for which the probability is being
calculated, given that mean, is the predicted value.

From the above statistical analysis, it can be conclud-
ed that functional form given by AB14, BA14, ZH16SI,
and ZH16SS has less bias and representing the Himala-
yan recoded data in a much better way as compared to
other GMPEs. NA09 used a three degree polynomial for
magnitude scaling, this could only be feasible for very
large magnitudes for the Himalayan region, i.e.,Mw > 7.
The variation of residuals with respect to magnitude is
mixed; hence, either a two hinged or three hinged func-
tional form is suitable for magnitude scaling. The hinge
point will be estimated in the next section.

Another observation made is that the most of the
Himalayan GMPE models are not having material
damping term in the GMPE functional form and have
high bias value in the PGA and SA from recorded data.
Hence, material damping termlog(PGA) ∝ distance need
to be included in future for any new GMPE for better
representation of the Himalayan database. As the area
over which the earthquake occur increases with increas-
ing earthquake magnitude, the effective distance be-
comes greater than epicentral/hypocentral distance by
an amount that increases with increasing magnitude
(Kramer 2003). In most of the Himalayan GMPE func-
tional forms, this increment is exponential of distance
(see NDMA10, NA09, and AN13 in Table 2, i.e.,
e(constant)M); however, based on present analysis, it is
seen that this is good for large magnitude but for small
magnitudes using this form over-predicts the PGA
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Fig. 6 Residual for SA at 0.2 s using NA09 and BA14. a Distribution of interevent residuals. b Distribution of intraevent residuals
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value. Hence, these GMPEs need to be used with utter
care for determining the hazard values. Therefore, to
account the distance attenuation for low- and high-
magnitude range, either of the distance scaling given
by BA14, AB14, BD14, ZH16SI, or ZH16SS will be
appropriate.

7 Distance and magnitude scaling of GMPEs

In this section, the suitability of functional form for the
NGA-West, Pan-European, Japan, and Himalayan
GMPEs with respect to distance and magnitude has
been studied in light of the recorded ground motions.
From the newly determined regression coefficients, re-
siduals have been calculated for all the functional forms
as mentioned in Tables 1 and 2. Further, the residuals
have been separated into intraevent residuals and

interevent residual and respectively plotted with dis-
tance and magnitude. The scaling with Vs30 is not deter-
mined, because the proper site response study for the
recorded station for the Himalayan region is not done
and also including Vs30 may result in biasing of a par-
ticular functional form of a GMPE.

7.1 Intraevent residual (ϵi , j) trend with distance

The suitability of a respective functional form of a
GMPE corresponding to distance scaling for the Hima-
layan database has been evaluated. The whole procedure
for ϵi , j is explained above. Figures 7 and 8 show the
trend of ϵi , jwith respect to distance for PGA for suitable
and non-suitable functional form for the Himalayan
strong motion database. As explained above, the slope
parameter bR (Eq. 3) represents the misfit of the distance
scaling in the Himalayan dataset with respect to the
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Fig. 7 Variation of intraevent residuals for the Himalayan database with distance for PGA for the suitable functional form. A typical
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J Seismol (2018) 22:161–185 177



selected functional form. Figures 7 and 8 also show
typical median residuals within the overlapping distance
bins. Similar plots for PSA at short period (0.2 s) and
long period (1.0 s) have been studied. The results from
Figs. 7 and 8 show the miscellaneous finding with
respect to the misfits between the NGA-West 2, Pan-
European, Japan, and Himalayan distance scaling with
the Himalayan database. From the analysis, it is seen
that the bR value varies from − 0.005 to − 0.08, 0.02 to
0.09, and − 0.15 to − 0.25 respectively at PGA, 0.2 and
1.0 s. As bR is less for PGA and at short period, this
means that the Himalayan data is attenuating at a faster
rate at long period and low at larger distance. From the t-
statistics, it is seen from Fig. 7 that BA14, AB14,
ZH16SS, and ZH16SI have the unbiased distance atten-
tion not only at short period but also at long period for
the Himalayan strongmotion database. The smallest and
the largest bR values are seen in ZH16SS and NA09
respectively in the Himalayan data for both long and
short periods. This indicates that the distance attenuation
functional form given by ZH16SS and BA14 is

following almost same trend as far as Himalayan data
is concerned with AB14 and ZH16SI being the
intermediate.

Similar from Fig. 8, it can be seen that even though
the functional form for AN13 and NA09 is same for
distance scaling, the additional coefficient of the mag-
nitude term reduces the residual at large distances. Sec-
ondly, the exclusion of material damping term in both
the equations results in heterogeneous trend of residuals.
Hence, additional to regional attenuation through
spreading of waves, material damping is needed to be
included in GMPE functional form. The lack of three
GMPEs AN13, NA09, and SH09 in estimation of atten-
uation of stress/seismic waves due to material composi-
tion, i.e., material damping (anelastic attenuation in
other words) results in decrease of ground motion am-
plitude exponentially with R (Kramer 2003). The bR
indicates the attenuation of stress waves due to both
spreading of waves and material damping; hence, in
case of AN13 and NA09, bR is more as compared to
the NDMA10 (see Fig. 8). Similar trend is seen in both
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Fig. 8 Variation of intraevent residuals for the Himalayan database with distance for PGA for non-suitable functional form. A typical
example for (a) NDMA10, (b) NA09, (c) AN13 and (d) AK14 is given.
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long and short periods. From the analysis of interevent
residual (ϵi , j), it can be concluded that the Himalayan
data is following amplitude decay with respect to dis-
tance because of both spreading and material damping.
So these terms need to be included in function form of
Himalayan GMPE.

7.2 Interevent residual (ηi) trend with magnitude

As explained above, similar to distance scaling, magni-
tude scaling is also tested by examining the trend of the
event terms versus magnitude. Figures 9 and 10 show
the variation of ηi with magnitude for PGA. Regression
has been performed according to Eq. 4 for PGA and
PSA at 0.2 and 1.0 s and given in Figs. 9 and 10. Non-
zero and significant bM term indicates that the magni-
tude scaling in the model does not match the data. From
the visual inspection of Fig. 9, it is observed that the
quadratic (ZH16SS and AB14) and linear magnitude
(CB14 but with hinge) scaling is following a good trend
with the Himalayan dataset. From the t-statistics, it is
determined that when the slope (bM) of the trend line is
non-zero, it is not statistically significant at 95%

confidence level. Based on the Fig. 10 and t-statistics,
it can be concluded that for higher magnitude, linear
equation for magnitude scaling is not suitable for the
Himalayan region. Even though CB14 functional form
has less ηi (see Fig. 9) at higher magnitudes, a significant
increase in ηi value can be seen. On testing the func-
tional form given by NA09, it can be concluded that
cubical equation from magnitude is also not suitable for
the Himalayan database (see Fig. 10). On more obser-
vation is that, in case of ZH16SI and BA14 distance,
functional form is capturing the attenuation properly;
however, similar result is not seen for magnitude scaling
for the Himalayan database. Vice versa, result is ob-
served for CB14 and AK14 functional forms. Function-
al form given by AN13, GU10, and SH09 has a signif-
icant slope (i.e., bM) of trend line. This may be because
of linear equation that is used for capturing the magni-
tude scaling and without hinge or reference magnitude.

From the above analysis, it can be concluded that
functional form given by ZH16SS and AB14 is properly
capturing the attenuation and magnitude scaling for the
Himalayan database. Further, it is also seen that hinge
point for magnitude scaling that separates lower
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Fig. 9 Variation of interevent residuals for the Himalayan database with magnitude for PGA for the suitable functional form. A typical
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magnitude to higher magnitude needs to be included in
the functional form. The GMPE form that captures

source, path effects, and represents seismotectonic of
the Himalayan region is given as follows:

ln SAð Þ ¼
a1 þ a2 Mw−Mhð Þ2 þ

�
a4 þ a5 Mw−Mhð Þln Rð Þ þ a6R; Mw < Mh

a1 þ a2 Mw−Mhð Þ2 þ a3 Mmax−Mwð Þ þ
�
a4 þ a5 Mw−Mhð Þln Rð Þ þ a6R; Mw≥Mh

8<
: ð8Þ

Form biased analysis (in previous section) and ϵi ,
j or ηi, it is seen that hinge point is much more
important in magnitude scaling. Hence, in next sec-
tion, genetic algorithm along with Monte Carlo
method is used for determining the hinge and refer-
ence points.

7.3 Determination of hinge point and standard error

The hinge point for the magnitude scaling is calcu-
lated using GA and standard error in the coefficients
using Monte Carlo approach. The bilinear hinge
functional form given as Eq. 8 is used for

determining the hinge magnitude using GA. For
the GA, the number of generations, number of indi-
viduals, crossover probability and mutation proba-
bility was set as 500, 50, 70, and 1%, respectively
(Nakano et al. 2015). In GA, constrain is only ap-
plied to Mhin Eq. 8 and it varies from 4 to 8. The
value of Mh that yielded the lowest residual value
has been selected. The entire procedure is also ap-
plied to SA at 0.2 and 1.0 s. Based on the analysis;
it is found that lowest residual is observed for Mh

equals to 6.5.
As per Anbazhagan et al. (2015), the seismic

hazard due to previous great earthquakes can be
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Fig. 10 Variation of interevent residuals for the Himalayan database with magnitude for PGA for non-suitable functional form. A typical
example for (a) BA14, (b) AN13, (c) ZH16SI and (d) NA09 is given
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seen for more than 500 km. Hence, constraining
hypocentral distance up to 300 km may not be
suitable for estimation of hazard value for large
earthquakes. Additionally, hinging only the magni-
tude may not capture the total attenuation because of
great earthquake for near filed and far field. There-
fore, as database is available up to 500 km for large
earthquake, distance scaling is also modified. An-
other factor for long-distance attenuation is also
added in Eq. 8. Hence, Eq. 8 is modified as

ln SAð Þ ¼ f Mwð Þ þ F R;Mwð Þ ð9aÞ

f Mwð Þ ¼ a1 þ a2 Mw−Mhð Þ2; Mw < Mh

a1 þ a2 Mw−Mhð Þ2 þ a3 Mmax−Mwð Þ; Mw≥Mh

�

ð9bÞ

f R;Mwð Þ ¼
�
a4 þ a5 Mw−Mhð Þln Rð Þ þ a6R; R < Rh�
a4 þ a5 Mw−Mhð Þln Rð Þ þ a6Rþ a7ln Rþ Rhð Þ; R≥Rh

8<
:

ð9cÞ

where Rh is the hinge in the hypocentral distance, and a7
is the coefficient corresponding to long distance
attenuation.

Similarly, GA is used to determine the hinge point for
distance. Distance is varied from 50 to 350 km with an
interval of 10 km along with magnitude. Finally, the pair
of Mw and R that yielded the lowest residual value has
been selected. Based on the GA, forMw and R values at
6.5 and 300 km, respectively, lowest residual value is
observed.

After determining the hinge point, the regression has
been done using Eq. 9aand coefficients corresponding
to independent parameters have been estimated. The
equation for PGA estimation is

ln PGAð Þ ¼ f Mwð Þ þ F R;Mwð Þ ð10aÞ

f Mwð Þ ¼ 5:391 0:28ð Þ þ 0:121 0:01ð Þ Mw−6:5ð Þ2; Mw < 6:5
5:391 0:28ð Þ þ 0:121 0:01ð Þ Mw−6:5ð Þ2 þ 0:356 0:025ð Þ 8−Mwð Þ; Mw≥6:5

�

ð10bÞ

f R;Mwð Þ ¼ −0:465 0:008ð Þ þ 0:056 0:01ð Þ Mw−6:5ð Þln Rð Þ−0:007 0:00ð ÞR; R < 300
−0:465 0:008ð Þ þ 0:056 Mw−6:5ð Þln Rð Þ−0:007 0:0ð ÞR−0:013 0:0ð Þln Rþ 300ð Þ; R≥300

�

ð10cÞ
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Fig. 11 Variation of a intraevent and b interevent residuals for the Himalayan database respectively with distance and magnitude for PGA
for newly derived functional form
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After determining the coefficients corresponding to
the independent parameters, Monte Carlo method has
been used for calculating the standard error in the pa-
rameters. The whole procedure is explained above and
is given as a schematic diagram in Fig. 3. The residual
corresponding to the newly derived equation for intra-
and interevent is given in Fig. 11. Further, using Monte
Carlo, ck, τ, and σ have been calculated from residual
analysis as explained above. One thousand sets of data
have been produced. The variation of ck, τ, and σ is
studied. The values of ck, τ, and σ determined are 0.02 ±
0.015, 0.52 ± 0.063, and 0.81 ± 0.036, respectively.
However, one of the ways that these values can be
improved is by adding more simulated data for entire
range of magnitude and distance in future works.

8 Conclusion

In the present study, the compatibility of different avail-
able GMPE functional forms for active region for mag-
nitude and distance scaling is determined to represent
the Himalayan seismotectonic. Methodology used for
estimating the suitable functional form has been
discussed and applied to the recorded strong motion
Himalayan database. Functional forms from five
NGA-West 2, five Himalayan, two Pan-European, and
one Japan GMPEs are tested for determining the appli-
cability of these in representing the Himalayan attenua-
tion character. For analysis, a mixed effect regression is
used on the residuals, which is newly determined using
these functional forms. The spatial correlation has been
used in mixed effect regression by changing its likeli-
hood function to determine the intra- and interevent
residuals. Distance scaling was investigated by examin-
ing the trends of intraevent residual with distance,
whereas magnitude scaling was examined by studding
the trend of the interevent term with magnitude. Further,
genetic algorithm and Monte Carlo method is respec-
tively used for determining the hinge points and calcu-
lating the standard error in each term that governs the
magnitude and distance scaling. The whole methodolo-
gy is tested for the recorded strong motion database for
the Himalayan region. Based on the bias analysis and
variation in intra- and interevent residuals, a new func-
tional form for the region is derived. Hinge points for
magnitude and distance have significant contribution for
determining the magnitude and distance scaling; hence,
using genetic algorithm, these are estimated. Using a

derived functional form, regression coefficients for a
new GMPE have been estimated for PGA for the Hi-
malayan region. Further, Monte Carlo method has been
used for calculating the standard error in these parame-
ters and standard deviation corresponding to inter- and
intraevent terms. However, the GMPE for the Himala-
yan region derived in this study is based on recorded
database but the database used is not covering full range
of magnitude and distance. This can be further improved
by incorporating synthetic ground motion database in a
future study.
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Appendix 1

Different GMPEs mentioned in Tables 1 and 2 are
ranked based on the LLH procedure. The recorded data
from 2015 Nepal earthquake is used in ranking the
GMPEs using LLH. Table 4 provides the ranking of
GMPEs along with LLH score for peak ground
acceleration.

Table 4 Ranking of GMPEs based on LLH criteria for peak
ground acceleration

S. no. GMPE LLH score Ranking

1 CB14 2.219 6

2 ID14 2.857 12

3 AB14 1.854 3

4 CY14 2.251 8

5 BA14 2.149 5

6 NA09 3.038 14

7 SH09 3.133 16

8 GU10 3.078 15

9 NDMA10 2.248 7

10 AN13 2.797 11

11 AK14 2.321 9

12 BD14 2.672 10

13 ZH16SI 1.783 2

ZH16SS 2.041 4

ZH16SM 3.019 13

14 New equation 1.701 1
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Appendix 2

The steps used in the mixed effect algorithm are as
follows:

I. Estimate the model coefficients, i.e., θ using a fixed-
effects regression algorithm assuming random effect
term, η equals zero.

II. Using θ, solve the variance of the residuals, σ2 and
τ2, bymaximizing the likelihood function described
as follows:

C ε tð Þ
ij ; ε

tð Þ
ij0

� �
¼ C εij þ η; εij0 þ η

� �
¼ ρ djj0

� �
σ2 þ τ2∀i; j; j

0

C ε tð Þ
ij ; ε

tð Þ
ij0

� �
¼ 0∀ j; j; i≠i

0

Parameter ρ d j j0
� �

denotes the spatial correlation

between intraevent residuals at two sites j and j′ as a
function of d j j0 , the separation distance between j and j

′.

The detailed discussion about determining ρ d j j0
� �

is

given in Jayaram and Baker (2010).

III. Given θ, σ2, and τ2, ηi can be calculated as follows:

ηi ¼
1

0
ni;1C

−1
c ε tð Þ

i

1

τ2
þ 1

0
ni;1C

−1
c 1ni;1

Cc is defined as conditional covariance metric(s) for

the total residual, ε tð Þ
i ¼ ε tð Þ

i1 ; ε
tð Þ
i2 ;…; ε tð Þ

ini

h i
, which is the

collection of total residuals at all the sites during an

earthquake i. 1
0
ni;1 is the transpose of the column met-

ric(s) of ones of length ni. The above equation is valid
only if the interevent residual follows a normal distribu-
tion and the intraevent residuals at multiple sites during
a given earthquake jointly follow a multivariate normal
distribution

IV. Given ηi, estimate the new coefficients (θ) using a
fixed effects regression algorithm for ln(Yij) − ηi.

V. Repeat steps 2, 3, and 4 until the likelihood in step 2
is maximized and estimates for the coefficient
convergence.

For more detail regarding the algorithm, refer to
Jayaram and Baker (2008) and Jayaram and Baker
(2010).
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